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Abstract

A simple and effective numerical procedure is presented for computing the
steady-state corona current distribution in electrostatic precipitator
configurations. Based on a Finite Difference scheme, it solves the coupled system
of the Poisson's equation and the space-charge drift formulal in complex
bidimensional geometries, taking into account the statistical size distribution of
the particulate and the corresponding charging process. A rigorous approach has
been used for the space-charge drift which is not based on the commonly used
Deutsch approximation.

This procedure represents a valuable design tool for predicting and comparing
the performance, in terms of current and electric field distributions, of different
electrostatic precipitator configurations and for optimizing their geometric
parameters (wire cross-section, wire-wire and wire-plate distances, shape of
collecting electrodes, etc.). Examples of application on practical ESP geometries
are reported.

1. Introduction

The electrostatic precipitators are the most widely used systems for removing
solid particulate from combustion flue gases of thermal power plants. The basic
principle underlaying the solid pollutant removal process is to charge solid
particulate by means of corona generated ions which then move towards the
collecting plate under the effect of the electric field.

In ESP configurations the electric field is generated by high DC or pulsed voltages
applied to the emitting electrodes, normally wires, while the collecting plates are
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carthed. The evaluation of electric field and current density distributions in the
interelectrodic space is not a trivial task, maily because of the presence of
complex ionization phenomena associated with the corona discharges.

It is possible to calculate ionic charge distribution analytically only in particularly
simple electrode geometries and if several simplifying hypotheses are adopted.
Several simplified numerical methods have been proposed in the past to solve
the problem using either finite difference, charge simulation or finite elements
approaches.

In this work a new resolution scheme using a finite difference method has been
developed to compute the steady-state corona current distribution in diverging
fields, which is not based on the Deutsch approximation and adopts a rigorous
approach for the space-charge drift. The procedure has been implemented on a
Poisson solver computer package and is being used as a design tool for estimating
the electric performance of ESP ducts.

2. Mathematical model

DC energized ESP configurations are characterised by low current electrical
coronas, where the ionization processes are confined to very small volumes near
the emitting wires, "ionization region", while most of the discharge gap is filled
with jons and charged particles drifting in low electric fields, "drift region".

The particulate at the ESP inlet is characterized by a specific granulometric
distribution, which can be divided in k classes : if N is the total number density
of the particulate and Nj is the number density of the i-th class at any point P
inside the precipitator volume, it results :

k
N =Y N;j (1)
i=1

It is assumed that each class has a specific mobility ji; and a charge which
corresponds to the saturation value given by :

Er
e 2 E 2
Jsi Er+280na1 (2)

where E is the magnitude of the local field, €, the dielectric constant, aj and €, the

particle radius and the relative dielectric constant respectively.
The space charge density at any point P can be therefore expressed as :

k
p=2 pj (3)
=0
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with :

pPi = Nj qsi; Po=Npe

where N is the ion number density and e the electronic charge.

The space-charge flow may then be considered to be given by unipolar ions and
charged particles drifting with (almost) constant mobility in combined space-
charge and externally generated electric fields. If diffusion phenomena are
neglected, the equations that describe the ion and particle motion in the "drift

region” are those defining the Poisson's field, the current continuity, the
conduction current density and the electrostatic potential :

(4)

where E is the electric field, ¢ the electric potential and J the current density.
By combining equations (1) to (4) it is possible to obtain :

k 2 oo
(5)

This allows to refer in equation system (4) to the total charge density p and to its
equivalent mobility :

(6)

which can be calculated at any point P, if the particulate characteristics are

known.
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It can be shown that the rate of change of the charge density p along any field
lines is given byl.2:

dp Sp
dt |field line = St * Heq EVp (7

Applying the Poisson's and the current continuity equations under stationary
conditions, with simple manipulations eq (7) may be rearranged as :

p2
(dp)field line =~ o B dx (8)

where x represents a curvilinear coordinate along the field line. Eq (8) can be
integrated directly between position x, and position x along the field line to give :

X
1 1 1 dx'

- == [=2- ©)
p(x)  plxo) eoXOE(X)

also known as the "unipolar charge drift formula": this formula describes exactly,
apart from diffusion effects, the charge density variation along its path, p(x), as a

simple function of position given the initial density p(x,), and independently of
the local mobility value.

Application of eq (9) however, requires the exact knowledge of the field lines,
which depend on the space charge distribution itself; the solution of the original
equation system (4) may be therefore reduced to the coupled solution of the drift
formula and the Poisson's equations :

£
p(x) = o
dx
€ + Po JE(X)
0

V24 =_E (10)

€o
E=-V¢

The necessary boundary conditions are the applied potential ¢, and the charge

density po at the border between "drift region" and "ionization region"; if the
latter is assumed to be very thin, the boundary conditions can be applied to the
emitting wire surface.
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3. Finite difference formulation

As stated above, the physical property described by eq (10), derived from the
unipolar charge drift formula, is a global property applicable along a field line. In
the present work a finite difference scheme has been developed in order to apply
such property on any node of an irregular mesh, used by a finite difference
Poisson solver3 to compute the electric field distribution in the discharge gap.
The procedure consists of a progressive calculation, starting from points where
the density p, is known from the boundary conditions and expanding over all

mesh points. Although originally developed for ESP configurations, it has
general validity and may be applied on electrode geometries of any complexity.

The finite difference formulation may be briefly described with the aid of fig. 1,
which shows a generic mesh node (i,j) together with its 8 neighbouring nodes.

inded ) ey =1 (141,3-1)
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Fig. 1. Finite difference mesh element showing node identifiers and field line.

The task is to determine the charge density p(i,j) on node (i,j), knowing the
electric field at all the neighbouring nodes and the charge densities on the 3
nodes of order (j-1).

If the point P represents the intercept between the field line passing through
node (i,j) and the mesh line of order j-1, the charge density p(P) and electric field
E(P) may easily be determined, as a first approximation, by linear interpolation of
the corresponding values in nodes (i,j-1) and (i+1,j-1).

Denoting Ax the length of the field line between P and node (i), eq. (10) may be
applied on Ax obtaining :

€ p(P)
2p(P) Ax
€0 * E(,)) + E(P)

p(ij) = (11)

which enables to compute the charge density on a generic node as a function of
local variables only.
28-5




Equation (14) may be applied to determine p(i,j) only provided that the charge
density on the correct pair of adiacent nodes has been already computed. This has
been accomplished by employing a suitable procedure that performs such
computation sequentially on all the mesh nodes ordered on the basis of flux
direction.

Further, since the electric field is a function of the space charge, the full solution
of this problem requires the solution of the non-linear system of coupled
equations (10) which can only be obtained with iterative procedures.

In the algorithm adopted the unipolar ion drift formula and the Poisson's
equation are solved iteratively until convergence is reached.

The convergence criterium includes the condition that the current at the
collecting plates equals the injected current at the corona wires.

4. Simulation results

The procedure described above allows to compute the steady-state corona charge
distribution in ESP configurations given the corona current injected into the
discharge gap from the ionization region.
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Fig. 2. Equipotential and field lines in a typical ESP configuration.

(a) Laplacian field; (b) Poisson's field.
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A computer program has been developed and integrated into a workstation
based software package for the solution of the Poisson's equation, whose graphic
post-processor enables to perform detailed analysis of voltage, electric field,
charge and current density distributions in the discharge gap.

As an example, figs. 2a and 2b show the equipotential and field lines, respectively
for the Laplace and Poisson solutions (i.e. without and with a DC negative
corona). As expected, the presence of the space-charge modifies both potential
and electric field distributions; in particular, the equipotential lines become more
dense in the low field region, which corresponds to an increase of the electric
field near the plates and a decrease near the h.v. wires. Further, due to space-
charge distortion, the electric field lines tend to be more concentrated towards the
centre of the collector plate, this effect becoming more marked as the corona
current increases. This indicates that the usually accepted Deutsch assumption
(the field lines are not modified by the presence of the space charge) can lead to

significant errors in practical configuration®.
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Fig. 3. Potential (a) and electric field (b) distributions along line A-B of fig. 2b.
Vp, Ep corresponds to Poisson solution; V|, E| corresponds to Laplace

solution. (c) Charge and current density distributions along the same line.
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The potential and field distributions along the maximum stress line (line A-B in
fig. 2b) are reported on fig. 3 (a and b), for both the Laplace and Poisson solutions;
fig. 3c shows the corresponding charge and current densities distributions.

In fig. 4 the field, charge density and current density distributions on the collector
plate (line B-C in fig. 2b) are shown. The charge density results almost constant
over most of the surface, while the current density is greately affected by the
surface field and thus increases near sharp corners. The electric field analysis is
useful at design stage in order to optimize the collector shape to adjust the
current density surface distribution.
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Fig. 4. Electric field (a), charge and current density (b) distribution on the
collector plate (line B-C of fig. 2b). The broken line indicates the Laplacian
field Ej.

5. Voltage-current characteristics

The proposed model describes on a physical basis the "drift region". In order to
compute realistic voltage-current characteristics, it would be necessary to
estimate with a good approximation the corona current injected from the
“ionization region" as a function of the applied voltage. In such case a
comprensive negative corona model, which accounts for its complex structure
and for the various phenomena involved at different voltage levels (glow
corona, Trichel pulses, breakdown streamers, etc.) should be employed.

Most of the models proposed in the literature are based on the Deutsch
assumption, although recently some critical studies have shown a shortcomings

of such approximation, in particular when interacting corona sources are
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involved#>. Given the complexity of the phenomena occurring within the
ionization region, it seems unfeasible that models based solely on "critical field"
criteria can provide realistic estimates of the corona current injected into the
"drift region".

However, in order to compare the current transport capabilities of different

geometric configurations in ESP design, simplified corona models and inception
criteria can be assumed : in this work the critical field concept has been applied in
order to estimate the "maximum corona current” which can be carried in a given
geometric configuration. This has been accomplished by gradually increasing the

charge density p, on the surface of the emitting wire until the local Poissonian
electric field becomes equal to the "onset field" as depicted on fig. 5. Increasing
the density po further would mean to lower the electric field below its limit
value and the corona discharge could not phisically exist.
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Fig. 5. Example of determination of maximum corona current.
Ic = corona current
Eyw = average electric field at wire surface
E;j = onset field.

In corrispondence of this "critical” condition, the "maximum corona current”
can be obtained by integration of the current density on the electrode surface. The
onset field values have been deduced from current literature values?.10, as
functions of wire radius and gas pressure and temperature.

By applying this procedure for different voltage levels, the "maximum" V-I
characteristics can thus be determined; of course the current should be intended
as the maximum theoretical value which could be produced by a DC negative
corona, and not as a realistic estimate of the experimental corona current.
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An example of the V-Imax characteristics is reported on fig. 6, where the
computed results are compared with experimental measurementsé. As can be
seen, the predicted onset voltage is very close to the measured value, and the
maximum current, even if consistently higher, has a similar slope as the
measured one.

I (mA)

vV (kV)

Fig. 6. Comparison of theoretical maximum corona current ( -o- ) and experimental
measurements ( --- ) as a function of applied voltage.

The model does not account for the time-variation of the space-charge, nor for
other transient electrical phenomena, which are known to occur in practice, like
Trichel pulses and back-corona. Such phenomena can only be accounted for by
using a complete time-dependent physical model, such that descibed in a
companion paper8. However, the model is being used as a design tool for
optmizing ESP geometries as regards wire-wire and wire-plate distances, wire
diameters and working voltages.

An example of application is given in figs. 7 and 8, where, given the wire
diameter (6 mm) and duct size (300 mm width and 3 m length), the optimum
wire separation, and consequently the number of wires per duct, is determined.

In fig. 7 the V-Imax characteristics are shown for various wire separation
distance. As expected, Imax increases with wire separation, due to the reduced
interactions of the corona space charge between adjacent wires. However, since
the duct length is fixed, the larger the wire separation the less is the number of
wires which can be fitted.

The maximum total corona current, determined by multiplying Imax for the total
emitting wire length, is shown on fig. 8 as a function of wire separation for
various voltage levels. It clearly appears that there is a non-linear relationship
between maximum total current and wire separation, with a maximum around
250-300 mm which is taken, for this specific example, as optimum distance.

28-10



05 —
0‘4 :—--- ---D=..36&mm “““ =
’é‘ : 5 D= 300mm
g ) 9
:g [ D= 240mm
vx 0.2 .;_ D= 180mm
& t :
o i e
a1 | D= 120mm ]
ot i

i sy A T PR VAT VI Y S W Y L i
30 35 40 45 50 55 60 65 70
V (kV)

Fig. 7. V-Imax characteristics for different wire separation distances.
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Fig. 8. Maximum total current as a function of wire separation for different
voltage levels.

6. Conclusions

In this work a numerical procedure is described for computing steady-state DC
corona regimes in ESP configurations.

By applying the Poisson's and current continuity equations, the charge drift
formula has been rearranged and expressed as a function of position only,
independent of time and mobility. This has enabled to develop a Finite
Difference scheme which has general validity and is applicable to electrode
geometries of any complexity.
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The procedure has been used to determine the space charge and current density
distributions knowing the applied potential and the initial current density at the
emitting wires, which can be either measured experimentally or determined
using a physical model of the ionization region.

However, in order to assess the current transport characteristics of a given ESP
geometry there is no need to model precisely the ionization region of the corona
discharge but rather to estimate the maximum current which can flow into the
gap- An iterative procedure based on the critical field concept has been applied to
compute the maximum corona current, thus enabling to determine the voltage-
current characteristics of any desired configuration. The effects of charged
particulate distributions are accounted for in the solution of the Poisson
equation.

The procedure has been implemented in a computer program presently used by
ENEL for design optimization of both conventional and innovative ESP
installations.
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