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1 Summary / Abstract: 

Some fundamental aspects of the electrostatic precipitator are investigated via a combination of tests 
in a high-voltage rig and numerical computations. The electric field and charge distribution in the duct 
are computed numerically using the commercially available FEM solver Comsol Multiphysics. The 
derived properties are compared with experimental data and general operating experience. Overall the 
agreement between numerical results and experiments is very satisfactory. This provides insight in 
some basic phenomena governing the precipitator behaviour, and may give qualitative guidance also 
in the practical design of precipitators. 

 
 

2 Introduction 

The numerical treatment of the electric field 
and charge distribution within an energized 
electrostatic precipitator (ESP) has traditionally 
attracted significant interest. Provided that the 
boundary conditions at the corona discharge 
can be simplified the problem formulation is 
relatively uncomplicated in it’s most basic form, 
despite the fact that the coupled partial 
differential equations (PDE’s) are non-linear. 
The complexity may then be increased if more 
advanced geometries and corona models are 
considered, or if coupling to the gas flow 
through the ESP is included in the scope. Also 
time-dependent problem formulations have 
been studied, for example to simulate a pulsed 
power supply. Many aspects of the duct-type 
precipitator have been investigated numerically 
in previous works and in addition analytical 
expressions have been developed within 
certain approximations. A full review is, 
however, outside the scope of this paper. 
 
The aim of the present work is to demonstrate 
the possibility to explain some fundamental 
phenomena appearing in the ESP via solution 
of the governing differential equations. This is 
done numerically using the commercially 
available program Comsol Multiphysics 
(version 4.1) [1]. This is a user-friendly FEM 
software package aimed towards coupled 
systems of partial differential equations. It also 
includes necessary features for post-
processing, including functionality for clear 
visualisation of the results. 

 
Experimental results have been obtained via 
an ESP pilot in the high-voltage rig at the 
Alstom Environmental Control Systems 
laboratories in Växjö, Sweden. By this test 
facility comparisons between numerical 
solutions and actual data was possible. 
Although the ESP set-up is a “cold pilot” (no 
hot or dust laden flue gases), care has been 
taken to reproduce all design details used in an 
actual commercial ESP. Furthermore the 
physical dimension is large enough to avoid 
excessive boundary effects and allow the 
transformer-rectifier set to operate at a 
reasonable current level. 

3 Numerical 

In a steady state situation there is a constant 
flow of charge (i.e. ions) from the discharge 
electrodes towards the collecting plates. 
Neither the electric field nor the charge density 
changes with time, meaning that the ESP is 
supplied by an ideal DC supply without ripple 
or pulsing. For this time-independent approach 
the equations to be solved are Poisson’s 
equation for the electric field and the continuity 
equation for charge conservation: 
 

)ρ()(0 xxE =⋅∇ ε  and 0))()ρ(( =⋅∇ xExK  

 
Here E is the electric field and ρ  is the charge 

density, while K  is the mobility of the charge 
carriers.

0ε is the permittivity of free space. The 

position vector x  corresponds to ),,( zyx  in 



the general 3D case. In practice the differential 
equations above are often expressed in terms 
of the electric potential, )Φ(x , related to the 
electric field by )Φ()( xxE −∇= . The 
corresponding second order equations are also 
typically the form that appears in most 
numerical schemes. The solution of the two 
equations can either be treated as a fully 
coupled system directly on the finite element 
mesh, or by iterative solution of the separate 
equations until self-consistency is reached. 
 
The basic geometry of a duct-type precipitator 
is rather straightforward. In fact, a two-
dimensional numerical treatment is enough to 
catch most of the physics related to the electric 
field and charge transport. Specifically for 
straight wires as discharge electrodes a 2D 
geometry is an exact mapping of the full three-
dimensional problem. Typically the high degree 
of symmetry within a duct allows for further 
simplification of the problem via periodic and 
mirror boundary conditions around the 
symmetry cell. This is exemplified in Fig. 1 
below, where the most basic geometry is 
shown together with a solution of Poisson’s 
equation for 0ρ =  inside the symmetry cell. 
 

 

Fig. 1: Basic 2D geometry for duct-type ESP. 
The domain treated numerically is shown with 
a solution for the electric potential. The size of 
the discharge wires has been slightly 
exaggerated in the figure for the sake of clarity. 
 
Even if the duct-type ESP in it’s most basic 
form it is essentially a 2D problem a full three-
dimensional treatment is required for most 
practical electrodes or if top/bottom boundary 
effects are studied. An inherent complication is 
the small size, or curvature, of the corona-
generating region of any discharge electrode, 
compared to the spatial extension of the inter-
electrode volume. This can, however, be 
overcome by a proper selection of adapted 
mesh for the FEM discretization. 
 
For solution of the partial differential equations 
boundary conditions are needed within the 
specified geometry. Two of these, for the 
potential Φ , are straightforward Dirichlet 

conditions. The grounded collecting plates 
gives 0Φ = , while the potential at the 
discharge electrode is taken as the ESP 
operating voltage ( U−=Φ ). However, a 
boundary condition is also needed for the 
charge density, ρ , and this is a matter of some 
complexity. The physics of the corona 
discharge, which generates the charge carriers 
at the discharge electrode, is so complicated 
that a detailed treatment is in principle out of 
the question. Instead some form of 
phenomenological ad-hoc model must be 
utilized at the discharge electrode boundary to 
capture as much as possible of the behaviour. 
In general a non-linear boundary condition, 
where the charge density at the discharge 
electrode depends on the electric field, is 
required for a realistic treatment (simulation) of 
the (actual) corona discharge. This may for 
example be the Peek condition for corona 
onset, postulating that above a critical field 
strength,

ONE , the charge density at the 

discharge electrode becomes non-zero [2]. As 
the voltage is raised, the charge density at the 
boundary has to increase correspondingly in 
such a way that the charge supplied to the 
domain balances the electric field to stay at 

ONE  (Kaptzov’s assumption). This is especially 

easy to accomplish in a 2D model with 
symmetrically positioned wires, since the field 
strength around the wire surface is virtually 
constant. 
 
The main tool for the numerical computations 
in this work is Comsol Multiphysics [1]. This a 
FEM software package for various physics and 
engineering applications, especially coupled 
phenomena. The entered equations and 
boundary conditions are collected into one 
large system that is solved using a weak 
formulation. Comsol has a selection of direct- 
and iterative finite element solvers for 
stationary problems, as well as advanced 
solution methods for time-dependent 
equations. All computations in the present 
work were performed on a standard PC, 
equipped with 24 Gb RAM and a six-core Intel 
Xeon 5650 processor at 2.66 GHz. 
 
To back up the results from Comsol they have 
been compared against corresponding 
solutions from a program developed by Alstom 
in the 90’s specifically for numerical ESP 
simulations [3-5]. Furthermore, three different 
numerical schemes within Comsol itself were 
compared for the same bench scale problem, 
as a further consistency check. Figure 1 show 
results from one such comparison. The electric 
potential,Φ , and charge density, ρ , are plotted 
along a line that goes straight from the 



discharge wire directly towards the collecting 
plate surface. The ion mobility, K , is assumed 
to be 1.8×10-4 m2/Vs [6]. 
 

 
Fig. 2: Comparison of numerical schemes from 
Comsol and old ESP-program. Black circles 
represent experimental data by Penney-Matick 
 
By choosing the collecting plate spacing, wire 
pitch and wire radius in the ideal geometry to 
9’’, 6’’ and 0.04’’, respectively, the numerical 
solution for the electric potential could also be 
compared against experimental results by 
Penney and Matick [7]. The applied voltage is 
46.2 kV. It is seen from Figure 2 that all 
numerical schemes generate identical results 
(indistinguishable curves), and that the 
potential is in excellent agreement with the 
measured data. It is also worthwhile to mention 
that the Penney-Matick experiments gave an 
average current density of 688 µA/m2 for the 
voltage at hand, while the computations result 
in 725 µA/m2. The relatively good agreement 
indicates that also the charge density from the 
computations may be representative of the real 
situation. 
 
For the computations seen in Figure 2 the 
value of the critical field strength,

ONE , has 

been taken as 6.1×106 V/m, which follows 
directly from Peeks formula [2] for ambient 
temperature and a wire radius of 0.04’’. The 
charge density at the corona wire has then 
been selected so as to keep the electric field 
constant at this value around the wire surface, 
in accordance with Kaptzov’s assumption. 
Given the good agreement of the computations 
with experimental data this treatment of the 
boundary condition seem to be suitable 
(satisfactory), at least for the type of 2D 
geometries suitable for a duct-type precipitator. 
 
A further feature of the numerical model has 
also been added to the Comsol computations 
from here on, namely the inclusion of ion 
diffusion. This means adding the diffusion term 

D− )ρ(
2

x∇  to the left hand side of the 
continuity equation. Including diffusion in the 
model makes it scientifically more correct and 
even though the diffusion constant, D , is a 

small number it has been claimed that the 
agreement with experiments becomes better 
[8]. Diffusion also contributes to stability in the 
numerical computations.  

4 Experimental set-up 

To be able to compare the numerical results 
against actual experimental data an ESP set-
up has been constructed. It consists of two 
parallel gas passes that can be fitted with 
either helical wires (spirals) or straight wires as 
discharge electrodes. Each collecting electrode 
curtain consists of four profiled plates with a 
nominal width of 800 mm (i.e. resulting in a 
field length of 3.2 m). The height of the 
collecting plates is 4 m, leading to a collecting 
area of 51.2 m2. The wire/spiral diameter is 
2.7 mm, leading to 6107.5 ×=ONE  V/m. 

 
Since one of the purposes of the ESP test-rig 
is to investigate critical areas for spark-over, it 
is constructed as a replica of a standard 
Alstom commercial precipitator. Thus, even if it 
is a cold pilot, it includes details like shock 
bars, tumbling hammers and rapping shafts. 
 
The ESP can be energized either by a 
conventional transformer-rectifier (T/R) or by a 
high frequency power converter (SIR). The 
conventional single-phase T/R is rated 200 mA 
and 200 kVp. The SIR (Switched Integrated 
Rectifier) converts a three phase AC at the 
mains to a rectified high frequency, high 
voltage output [9]. This leads to nearly perfect 
DC current, compared to the rippled DC from a 
conventional T/R. The rating of the particular 
SIR used for the ESP rig is 200 mA, 125 kVp. 
 

 
Fig. 3: View of the ESP set-up in the HV-rig 
with the side cover removed to expose the 
collecting plates. 
 



The latest feature added to HV-rig is the 
possibility to measure the current distribution 
profile on the collecting plate. The data 
generated by this equipment is compared 
against numerical results in Section 5.3. 
Similar current distribution measurements have 
also been performed previously in the Alstom 
high voltage lab. A well-distributed current is of 
importance e.g. to minimize back-corona in a 
real precipitator [10]. 

5 Results 

A selection of results from the numerical 
Comsol computations of relevance for a 
practical precipitator are described in the below 
sections. Where possible the numerical results 
have been compared to experimental data or 
general field experience. Although voltages 
and charges are given as absolute numbers, 
negative corona is implied throughout. 

5.1 Profiled collecting plates 

To reach the mechanical stability required for a 
tall collecting plate it must be profiled. Since 
the electrical field strength at the grounded 
plate surface is postulated to determine when 
a spark-over occurs, it is very important to 
have smooth curvatures [11]. 
 
Comsol has functionality to import CAD 
drawings, which was convenient for building 
the geometry for the plates. Compared to the 
ideal geometry the number of mesh points 
increases significantly at the plate to be able to 
resolve the electrical fields at the G-profiles at 
the end of the plate. Furthermore, the 
symmetry cell now includes all three wires and 
both collecting plates. This can be appreciated 
from Figure 4, where the electric field strength 
is shown as a colour map. 
 

 
 
Fig. 4: Electric field intensity of a solution with 
profiled 800 mm collecting plates. For the 
rightmost wire also the field lines are included. 
 
It can be seen in figure 4 that the electric field 
is significantly enhanced at the perturbations 
on the collecting plates, in accordance with 
previous findings [8]. When comparing the 

computed maximum field strength at the G-
profiles for a current matching the spark-over 
limit in the experimental rig, it was found that it 
was virtually independent of e.g. plate spacing. 
Thus, the combined results from numerical 
computations and experimental spark-over 
voltages support the assumption that it is 
indeed the maximum local electrical field 
strength at the grounded plates that 
determines the spark limit in a precipitator. 
This critical field strength, occurring at the 
upper G-profiles to the left and right in 
Figure 4, was 1.2×106 V/m. 

5.2 Voltage-Current characteristics 

An important diagnostic of a precipitator is the 
current-voltage characteristics, or I-V curve. 
The reproduction of an I-V curve within the 
numerical treatment of an ESP is thus an 
important consistency check of any model.  
 
Figure 5 compares experimental I-V curves 
generated by both the conventional T/R and 
the SIR power supply with computed curves 
from Comsol. Also the difference in I-V 
characteristics between spirals and straight 
wires obtained in the test-rig is shown (for the 
SIR power supply). The experimental data 
shows that for a given average current input 
the average voltage is somewhat higher for the 
SIR compared to the conventional T/R. 
However, the peak voltage for a given current 
is significantly higher for the conventional T/R 
due to the ripple. For example, at an average 
voltage of 70 kVav the peak voltage was 
measured to be 110 kVp for the T/R. For the 
SIR the corresponding value was about 
75 kVp. From this it is easily understood that a 
significantly higher power input can be reached 
before spark-over. Another finding from the 
HV-rig is that the voltage is about 6 kV higher 
for straight wires compared to spirals for any 
given current. 
 

 
Fig. 5: Comparison of experimental and 
numerical I-V curves. The collecting electrode 
spacing is 500 mm. 
 



The numerical results, shown as dashed lines 
in Figure 5, demonstrate that the best 
agreement between the computations and 
experiments is obtained for the straight wires 
and SIR. This is expected since the numerical 
model for this case is the straight wires (2D) 
and perfect DC current (stationary model). The 
significant time dependence due to the 50 Hz 
ripple from a T/R cannot be properly 
represented in our stationary numerical 
treatment. Therefore it is seen that even when 
the corona onset from Peek’s experiments is 
artificially lowered by as much as 20% the 
curve shape does not fit the data obtained from 
the T/R very good. ((When changing from 
spirals to wires in the experiments, the SIR 
characteristics get much closer to the 
computations that are based on 

ONE taken from 

Peek’s formula.)) 

5.3 Current distribution on the 
collecting plates 

A special foil glued to one of the collecting 
plates in the HV-rig allows measuring the 
current entering each cm2 of the collecting 
area. Corresponding information can easily be 
obtained from the post processing tools for a 
numerical solution in Comsol. A comparison 
between an experimental measurement and a 
numerical computation at an average current 
desity of 600 µA/m2 is provided in Figure 6. 
 

 
Fig. 6: Profile of the current entering the 
collecting plate with straight wires. 
 
The agreement between experiment and 
computation is seen to be quite good. The 
three “humps”, showing the higher current 
density in front of each spiral are well 
reproduced, as is the sharp peaks at the G-
profiles at the edges of the collecting plates. 
The high current at the plate perturbations is a 
direct reflection of the high electrical field 
strength at these positions (c.f. Figure 4). 
Since straight wires were used for the 
experiment the 2D treatment in Comsol 
suffices for an exact representation of the 
actual geometry.  

5.4 Estimate of migration velocity 

The classical measure of ESP performance is 
the Deutsch migration velocity,ω , which may 
be seen as the speed at which the particles 
travel towards the collecting plates [12]. The 
ESP collection efficiency is then given by 

[ ]QACC inout /ωexp1 −=− , where QA /  is 

the specific collecting area in m2/m3/s. The 
equilibrium velocity of a charged particle of 
radius a  in the electric field is given as the 
balance of the driving force and the drag force:  

ω6E y aq πη= . 

The electrical charge on the particle at 
saturation can be estimated in the field 

charging regime by E
2

012 aq πε=   [12]. 

 
From the numerical solution the electric field is 
known at each point in the inter-electrode 
space. Assuming that the turbulence and gas 
flow gives no net contribution to the transport 
of a particle towards the collecting plates, the 
average velocity is given by: 

∫∫
ΩΩ

= xxxE dd
a

)(E
2

ω y

0

η

ε
. 

The charging field, E , is taken as: 

∫∫
ΩΩ

= xxExE dd )( . 

The integrals can be performed by the post 
processing tools in Comsol on the solution 
domain, Ω , for the geometry and boundary 
condition (voltage) at hand.  
 
Since there has been some debate in the past 
regarding the influence of plate spacing on 
migration velocity the evaluation has been 
done for a number of geometries, having 
different spacing. The computations have been 
repeated for several current densities for each 
spacing. The result is shown in Figure 7. 
 

 
Fig. 7: Migration velocity as function of plate 
spacing for different current densities. The 
migration time in the right graph is in principle 
the velocity divided by half the spacing. 
 



The calculations have been performed for 
particles of diameter 2 µm ( 6

101
−×=a ) and a 

gas viscosity, η , of 1.8×10-5. As expected the 
migration velocity increases with increasing 
current density (and associated voltage). The 
curves represent 50, 150, 300, 500, 1000, 
1250 and 2000 µA/m2, respectively. The 
curves come in the opposite order in the right 
graph, showing the migration time. The dashed 
curve, having a current density of 1250 µA/m2, 
represents the break line where the migration 
velocity becomes proportional to the plate 
spacing. However, already at e.g. 500 µA/m2 
the migration time has a very weak 
dependence on the spacing. 
 
It is important to emphasize that the above 
measure for the migration velocity is only a 
rough qualitative estimate. From the full 
numerical solution a number of other variants 
could be envisioned, such as for example 
limiting the integration to an area adjacent to 
the collecting plate where the actual collection 
of particles take place. Another approach that 
is more advanced is to add also the gas flow 
inside the ESP, including turbulence models 
and volume force from the ion transport, and 
thereafter run particle trajectories through the 
domain. The fraction of particles that reach the 
far end of the domain compared to those 
impacting on the collecting plates gives an 
estimate of the collection efficiency. However, 
even the most advanced model would likely 
not be able to provide a practical estimate of w 
that may be used e.g. for ESP sizing. 

5.5 Impact of space charge due to 
dust laden gas 

The phenomenon of corona suppression due 
to the space charge effect from a large amount 
of sub-micron particles in the gas is a well 
known problem for certain ESP applications, 
such as soda recovery boilers [13]. Even for 
“ordinary” applications, as for example 
precipitation of fly ash after a coal-fired boiler, 
it is typically seen that the first field of the ESP 
has to operate at a higher voltage to reach a 
given set-point for the current. Often this also 
leads to excess sparking in the front field. 
 
The simplest theoretical model to take into 
account the dust space charge is to add a 
constant contribution to the charge density in 
the entire domain [11,13]. This contribution 
does not add to the current due to the very low 
migration velocity of the particles compared to 
the charge carried by the fast-moving ions. In 
the simplest approach the addition of dust 
space charge Poisson’s equation thus takes 
the form 

dustρε +=⋅∇ )ρ()(0 xxE , while the 

continuity equation remains unchanged. When 
this exercise is done in the numerical 2D 
model, it is clearly seen how, for a given 
voltage, the current decreases when 

dustρ  

becomes larger. This is demonstrated in 
Figure 8 for the voltages 60 kV and 80 kV at a 
plate spacing of 400 mm. 
 

 
Fig. 8: Current density as function of dust 
space charge for 60 kV and 80 kV. 
 
It is interesting to note that complete corona 
quenching occurs already at a dust space 
charge of 11 µC/m3 and 17 µC/m3 for 60 kV 
and 80 kV, respectively. This is significantly 
lower than the charge that would be attached 
to fully saturated particles for typical dust 
concentrations at the ESP inlet. For example, 
the virgin fly ash from a pulverized coal boiler 
may have a surface area in the order of 1 m2/g. 
For a typical inlet dust concentration to the 
ESP of 10 g/m3 this would result in a saturation 
charge of >100 µC/m3 for a reasonable 
average charging field (c.f. expression in 
Section 5.4). Thus… Thus By the same token 
the particles cannot reach their saturation 
charge before a significant fraction of them 
have disappeared from the inter-electrode 
region by precipitation on the collecting plates. 
Only when a significant fraction of the dust has 
disappeared from the inter-electrode space 
can the remaining particles reach their 
saturation charge. 
 
It is not necessary to limit the dust space 
charge to a simple constant in the numerical 
treatment. For example, it can be taken as an 
arbitrary function along the length of the 
precipitator, i.e. )(ydustρ . If a reasonable 

shape is selected for the function this can for 
example simulate the decrease of 

dustρ  due to 

collection of particles.  
 
This was performed for a numerical model with 
parameters loosely based on recent data from 
an ESP after a lignite-fired oxyfuel boiler [14]. 
The function was taken to be of the form 

[ ]yy λρ −exp)θ(ˆ , where )θ( y  is a smoothed 



step function to simulate the charging of the 
particles, and λ  is selected to represent a 
realistic decrease of the dust (charge) 
concentration through the first field of the ESP. 
The maximum dust charge, ρ̂ , was selected 
as the charge density for complete corona 
quench, which is the 11 µC/m3 from Figure 8 
since the operating voltage was around 60 kV 
for the present example. From dust 
measurements at the oxyfuel plant it was 
concluded that the dust concentration after the 
first ESP field was in the order of 20 mg/m3 at 
the high current density prevailing (450 µA/m2). 
For this low dust concentration the particles 
can have their saturation charge without 
completely quenching the corona. Since the 
remaining particles have a smaller average 
diameter a dust space charge of a few µC/m3, 
may be expected. Given this an appropriate 
value for λ  can be selected.  
 
The so-obtained function for )(ydustρ  was 

added to a 2D model stretching over the full 
length of the first ESP field. The boundary 
conditions at the wires were to comply with the 
Peek-Kaptzov assumption. The numerical 
result showed that the voltage needed to reach 
the set point of 450 µA/m2 was 6 kV higher 
compared to the case when no dust space 
charge was added. This correlates well with 
the voltage difference of about 5 kV between 
the first and second ESP field, which was 
observed during the measurement campaign 
at the oxyfuel plant [14]. 
 
Of course the selected expression for )(ydustρ  

is rather arbitrary, although based on some 
reasonable assumptions. It is anyhow 
interesting to see that this ad-hoc approach 
result in a level of corona suppression that 
compares favourably with actual observations 
at site. This being said, it would be desirable to 
develop a model in which the dust charge is 
actually a function, )(ρ xdust

, included in the 

system of PDE’s. In this way it could be 
appropriately coupled to the ionic charge to 
reach a fully self-consistent solution.  However, 
since )(ρ xdust

 is inherently dependent on the 

dust concentration, assumptions regarding the 
particle collection would still have to made 
since it is not realistic to include a model for 
the dust concentration )C(x  in the PDE’s. 

5.6 3D-computations for spiral 
discharge electrodes 

Although it has been shown by the previous 
sections that very much of the physics of a 
duct-type ESP can be adequately covered in a 
2D model, some computations have also been 

carried out in 3D. This was done for the spiral 
discharge electrode, which is often fitted in real 
ESPs due to its good current distribution. The 
3D-treatment requires a significantly higher 
number of mesh-elements in the numerical 
model, making memory and computation time 
an important factor to consider. It was possible 
to use about 500 000 mesh elements with a 
segregated solver for one turn of one spiral 
with non-profiled plates. About 80% of the 
mesh points are located in the immediate 
vicinity of the spiral electrode. 
 
Also the corona model must be treated in a 
more elaborate way, since the electric field 
now becomes highly non-uniform on the spiral 
surface. This being said it was still desired to 
have a Peek-Kaptzov condition for the corona, 
given the successful use of this approach for 
the 2D results. To model the corona discharge 
by a non-linear boundary condition, where     
ρ  depends on the electric field at the electrode 
surface, will require some assumptions about 
the physics. Since it is our intention to avoid 
this as far as possible we start off with a 
relation that is as simple as possible: 

( )ONE−×= ΓΓ )()ρ( xEx α . 

It now has to be understood that the Peek-
Kaptzov condition will follow when the 
coefficient α  goes towards infinity. Then the 
corona discharge will act as a copious source 
of charge and even the smallest increase of 
the electric field at the boundary will generate 
the charge needed to quench the field by 
negative feedback in the self-consistent 
solution. Due to this the exact functional 
relationship of the boundary condition 
becomes relatively insignificant. Unfortunately 
the problem also becomes increasingly non-
linear when α  increases, resulting in 
convergence problems if the numerical 
scheme is not set up in a correct way.  
 
The boundary condition as per above can be 
directly implemented in Comsol and the 
selection of a suitably large value of α  was 
based on comparisons within the already 
investigated 2D modes. Thus, when α  was 
taken large (about five times the ion mobility) 
the results sufficiently close replicated those 
obtained previously with the manually 
controlled Peek-Kaptzov condition. Further 
increase of α  did then not change the results 
appreciably. 
 
The geometry and numerical solution for the 
3D spiral can be appreciated from Figure 9. 
From the cut-plane it is seen how the corona 
discharge is injecting charge to the domain 
from the “outer” side of the spiral surface, 



where the electric field is strongest. The figure 
also shows the nodal pattern of the current 
distribution entering the collecting plates, which 
has been confirmed by measurements [3,10]. 
 

 
Fig. 9: Computation for 3D spiral with flat 
collecting plates and periodic boundaries. The 
current profile on the plates shows the typical 
nodal pattern. 
 
Regarding the current-voltage characteristics 
the computations give at hand that the voltage 
needed for a certain current is about 2 kV 
lower for a spiral compared to a straight wire. 
This is in the right direction, but does not 
replicate the 6 kV seen experimentally in 
Section 5.2.  Reasons for the discrepancy 
could be details of the corona model as well as 
the non-profiled collecting plates used for the 
numerical treatment of the spiral (profiled 
plates have been seen to increase the current 
input by 4-5% within the 2D model). 

6 Conclusions 

By a number of examples it has been shown 
that numerical computations can be used for 
an increased understanding of various 
phenomena in the duct-type ESP. For this 
purpose it is very often enough with a two-
dimensional treatment. Satisfactory agreement 
with experiments and field experience was 
reached. For the type of investigations 
performed in the present work it is possible to 
use commercially available FEM solvers, like 
Comsol Multiphysics, and regarding the 
hardware it is nowadays enough with a state-
of-the-art PC. 
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