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1 Abstract— This paper aims at analysis of the 

monopolar ionized field in electrostatic precipitator 

(ESP). An iterative finite-element technique is used 

to solve Poisons equation. We proposed the 

introduction of a potential corresponding to the 

critical minimum ionization field directly in the finite 

element formulation as a Dirichlet condition. The 

theoretical migration velocity is obtained by 

balancing the drag force with the Coulomb force or 

Electrostatic force acting on a particle. We used the 

model introduced by Cochet for predicting a particle 

charge. The model assumes that a particle of the same 

size attains an equivalent maximum amount of charge 

for a charging time equal to infinity. 

Keywords: Corona discharge, Finite element method, 

Electric field, Particle velocity 

 

2   Introduction 
    The ESP operates in the three-step process:  

charging the particles under nonuniform very high 

electric field strength, collecting the charged particles 

on the collecting surface and cleaning the collected 

particles by washing the collecting electrode with 

liquid. 

    Corona discharge, as applied to electrostatic 

precipitators, is a gas discharge phenomenon 

associated with the ionization of gas molecules by 

high-energy electrons in a region of the strong 

electric field strength. The process of corona 

generation in the air at atmospheric conditions 

requires a nonuniform electrical field, which can be 

obtained by the use of a small diameter wire 

electrode and a plate or cylinder as the other 

electrode. An application of a high voltage to the wire 

results in a production of a high electric field, which 

reduces significantly with the increasing distant away 

from the surface of the wire. The reduced electric 

field near the collecting electrode thus helps to 

prevent an initiation of the electric arc or sparking 

due to the electron bridging across the interelectrode 

spaces. In contrast to the wire-plate system, a uniform 

electric field is generated between two parallel 

electrodes, which is more likely to lead to an 

electrical sparkover due to no limitation of electron 

avalanche by the reduced electric field [1,2]. 

    This paper presents a numerical algorithm which 

can be used to simulate the essential parameters of 

the process in the wires – two planes configuration, 

including the electric field, the space charge, the 

current density and the theoretical migration velocity. 

 

3 Mathematical modelling of 

electrostatic precipitator 
The corona phenomenon are obtained from the 

following relations [3] 
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where 


E  is the electric field intensity vector (V/m), 

  is the space charge density (C/m
3
), 



J  is the 

current density vector (A/m
2
),   is the electric 

potential, 0  is the permittivity of free space and   

is the ion mobility (
11241085.1  sVm . 

    Equations (1)-(4) are, respectively, Poisson’s 

equation, the current continuity condition, the 

equation of current density and the equation relating 

the electric field to the potential. These differential 

equations must be solved for the potential   and the 
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space-charge density  , both being functions of the 

space coordinates. 

In reality, it is extremely difficult to find an exact 

solution to these equations due to their nonlinear 

nature. However, there are analytical solutions for 

simple geometries such as spherical and coaxial 

configurations. All attempts at solving these 

differential equations have been based on some 

simplifying assumptions [2, 4]. 

The most common ones are the following. 

(i) The entire electrode spacing is filled with 

monopolar space-charge of the same polarity as 

the coronating conductor. The thickness of the 

ionization layer around the conductor is 

sufficiently small to be disregarded with respect 

to the interelectrode spacing. 

(ii) The space-charge affects only the magnitude 

and not the direction of the electric field. This 

assumption was suggested at first by Deutsch 

and later referred to as’Deutsch’s assumption’. 

(iii) The mobility of ions is constant (independent of 

field intensity). 

(iv) Diffusion of ions is neglected. 

(v) The surface field of the coronating conductor 

remains constant at the onset value 0E , which is 

known as Kaptzov’s assumption [5]. For the 

conductor-to-two plane configurations, 0E  is 

expressed in kilovolts per centimetre as   
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where 0r  is the conductor radius in centimetres, U is 

the applied voltage and H  is the distance between the 

wire and the collector plate.            

                                                                                                 

    In the present analysis, the electric field at the 

surface of the coronation conductor,  

    )/( 010 VUfEEcrit                                           (6) 

where the function 1f  is assumed to have the 

following form [2]: 
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In conductor-two planes configuration V0 is given as 
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    Solution of equations (1)-(4), which describes the 

space-charge ionized field, requires three boundary 

conditions. 

(i) The potential on the coronating conductor is 

equal to the applied voltage. 

(ii) The potential on the grounded electrode is zero. 

(iii) The magnitude of the electric field at the surface 

of the coronating conductor critE  is assumed to 

be a function of the applied voltage. 

 

    Many attempts have been made to solve the 

ionized field problem using the finite-element 

technique (FET) [1 - 4]. None of them included 

particle velocity in the solution of the describing 

equations. A few attempts have included particle 

charge but using other numerical techniques. 

        In the present paper, the monopolar ionized field 

equations are solved in wires-two planes 

configurations. An iterative FET is used as a 

numerical tool to solve Poisson’s equation and is 

supported by two algorithms. In the fist algorithm, 

the current continuity condition is satisfied, 

neglecting ion diffusion, using a modified 

characteristics method. In the second, the current 

continuity condition is satisfied by applying 

Kirchhoff’s current-balance law at each node of the 

FE grid. 

 

4 Proposed method of analysis 
   The solution of the space charge field for wire- duct 

precipitators is described in the following sections. 

The investigated wire-two planes configuration has a 

Wire radius 0r  and height H above the ground plane 

(see Fig. 1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Electrostatic precipitator configurations 

 

 

    The proposed method of analysis is described in 

the following procedure (Fig.2).  
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Figure 2.    Flow chart of the solution method 

 
      
 

    The solution process involves the following steps: 

Step1: The first mesh is created in the absence of 

space charge and, therefore, the electric field is 

Laplacian.  

Step 2 

    Solve via the finite-element method the Laplace 

equation for Ф ( 0 ). The potential at the jth 

boundary is expressed as                                       
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where ijC  is the potential coefficient of the charge 

jq  at the jth point and is equal to  
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jr  And '

jr  are distances from the ith point to the 

charge 
jq  and to its image.  

Step 3 

    The space charge density located at node (i,1) 

around the periphery of the ionization region is 

assumed initially as: 
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and 
i is the angle at which the field line emanates 

at the wire surface [6]. 

 

Step 4 

    The evaluation of the space charge density. From 

the current continuity equation we can write 
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(1)  and (15)  
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Along field lines, the Eq.16 becomes [7, 8] 
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    Integration of eq. 17 gives values of the space 

charge density along field lines. For the resolution of 

Eq.17, we used the Runge-Kutta method [9]. 

 

Step 5 

    Using the FEM, solve Poisson’s equation, eq. 1. 

The potential    within each element is 

approximated as a linear function of coordinate:  

        332211 www            (18) 

With 1, 2, and 3 representing the nodes of the 

element e Fig.3, and w is the corresponding shape 

function [10]. 

A functional  
eR  is for mulcted in the usual FEM:   
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where A is the area of triangular element, [W] is the 

row vector containing the elements shapes functions. 



Equation (19) is transformed into linear equation by 

minimizing the functional
eR , in the form:  
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    Note that ),( jji yxN  is the shape function and 

the coefficients of ia , ib and ic  can be easily 

determined from the definition of the shape function 

in the finite element theory.   

                                             

Step 6 

    Calculate the electric field distribution from the 

potential using the interpolation/extrapolation method 

along each field line[11]. 

 

4.1 Particle charge phenomena 

 
    In intermediate range of particle sizes (0.1-1 μm), 

both diffusion and field charging mechanisms 

contribute significantly to charge on the particles 

leading to a more complex charging equation.  

    The theoretical analysis of field charging is 

generally made with three simplifying assumptions 

that are: 

   1) The particles are spherical,  

   2) The field from one particle does not modify that 

in the proximity of another particle,  

   3) The particles and ions are suspended in a region 

permeated by a constant electric field. 

    The first combined charging model introduced by 

Cochet (1961) for predicting charge on each particle 

is shown in Equation 26. The model assumes that a 

particle of the same size attains an equivalent 

maximum amount of charge ( q ) for a charging time 

equal to infinity[12,13]. 
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where λ is the mean free path of gas ions (m) and E is 

the pseudo-homogeneous electric field strength 

(V/m). 

 

4.2 Particle transport phenomena 
    The theoretical migration velocity is obtained by 

balancing the drag force with the Coulomb force or 

Electrostatic force acting on a particle. Under a 

steady-state condition and in the Stokes regime, the 

theoretical migration velocity is expressed by 

Equation 27 [13]. 
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where Cu is the Cunningham correction factor and μ 

is the gas dynamic viscosity (kg/m.s).  

 

5 Results and discussion  
    The physical dimensions are wires height H = 5,0 

cm, radius 2,00 r  mm, with a base plane length of 

20 cm. The ion mobility was set at 
11241085.1  sVm . The surface factor η is equal 

to 1. The grid is generated from the intersection of 

field lines with equipotential contours see Fig.3. This 

is called field mapping.  
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Figure 3 .  Generated grid for a precipitator. 

 
 

 

The  distribution of electric field is shown in figure 

4. 
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Figure 4.  Distribution of electric  field  

The calculated distributions of electric field at the 

ground plane are shown in figures 5 and 6. 

 
Figure 5.   Electric field at the ground plane 
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Figure 6.   Electric field at the ground plane for 

different distance and different voltage  

 

     In this study, the pseudo-homogeneous electric 

field strength representing a rough estimate of the 

real electrical state in the ESP was used for 

calculating the particle charge (figure 7)and the 

particle theoretical migration velocity (figure 8) in all 

the tested models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 7.  Variation of particles charge with diameter 

for different values of electric field 

( = 0,065μm, 5,4r , T = 20°C) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

 

Figure 8  Variation of migration velocity  with the 

size of particles ( 065,0 μm, 

smkg ./1085,1 5  et T = 20°C). 

 

 

     The Cochet charging equation assumes the 

charging time to be infinity, which may not be 

realistic in this experiment where the residence time 
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is 0.1 s, therefore more likely leading to an over 

prediction of the collection efficiency for particles 

smaller than 40 nm. The measured values are 

substantially higher than the predicted values using 

the original Deutsch equation with the Robinson 

charging assumption for particles of all sizes. 

However, the model results show the same trend of 

the collection efficiency as a function of particle 

diameters as that obtained from the measurement. 

The predicted values using the laminar model with 

Robinson assumption show better agreement with the 

measured values for particle diameters less than 40 

nm. 

 

 

6 Conclusion 
    In the present work, the finite element method is 

shown to be uniformly applicable to all the equations 

describing the problem of electric field in corona 

devices. Using the Newman and Dirichlet boundary 

conditions method enables quadratical convergence 

of steady-state solutions such that they are obtained 

in a few steps. 

     The proposed numerical computation takes into 

account the thickness of the ionisation region 

whereas previous works of this problem ignored this 

parameter. We integrate the potential correspondent 

to the minimum ionization field directly in the 

formulation of the FEM on the border of the 

ionization region, which reduces the algorithm 

computation. 

    The electric field vector is the sum of the field due 

to the voltage applied at the transmission line plus the 

field contribution of the continuous space charge 

distribution. The predicted results indicate that the 

particles were pushed away from the discharge 

electrode towards the collecting wall due to the effect 

of corona winds, which is consistent with the actual 

particle concentration profile displayed in the 

photograph reported by previous studies. 
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