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1 Summary / Abstract: 
Mathematical models of different complexity are developed for the description of the residence time 
dependent current uptake in a tube wire type electrostatic precipitator under conditions of corona-
quenching. For a simple tube-wire geometry, corona quenching by concentrated aerosols is studied 
theoretically, by numerical simulation and experiments. 
The numerical simulations are executed in 1D, whereby various levels of complexity (including particle 
and ion space charge, ion extinction, lateral mixing (turbulent diffusion), particle charge and size 
distribution, charging and agglomeration kinetics) are attained.   
Simulation predictions of the current uptake behaviour are compared to experimental results from 
batch type and continuously operated electrostatic precipitators.  
 
 

2 Introduction  
 
Corona quenching occurs when highly concen-
trated aerosols enter into an electrostatic 
precipitator. The current uptake drops 
dramatically and at the same time, the 
emission of particles goes up and sparking 
occurs. Usually, corona quenching is seen as a 
disturbance of regular electrostatic precipitator 
operation. Here we discuss corona quenching 
as a special (and very efficient) regime of ESP 
operation, which however requires special 
rules of design and operation. 

2.1 The electric field in an ESP 
under consideration of particle 
attached space charge 

The knowledge of the local electric field in an 
ESP is fundamental for calculating particle 
charging kinetics and particle migration velo-
city. In common one stage ESPs, the electric 
field is, at least beyond a certain distance from 
the corona electrodes, mainly governed by the 
space charge in the ESP. For the axi-
symmetric case of a tube wire type ESP, the 
distribution of the electric field can be 
calculated, when a constant particle attached 
space charge is assumed over the ESP’s 
cross-section.  
Assuming additionally a constant mobility of 
the ions while travelling from the corona wire to 

the collecting electrode and the applicability of 
the continuity equation for the ionic current (the 
loss of ions due to particle charging is dis-
cussed later) one finds the local ion concentra-
tion to depend on the radius coordinate as 
follows:  
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(Eq. 1)     
Here, the use of the <-1-branch of the Lam-
bertW-function is indicated by the index -1.  
The corresponding electric field distribution is 
found to be: 
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(Eq. 2) 
 
For a given voltage U, applied to the ESP, the 
ionic current I in eqs. 1 and 2 has to be found 
iteratively by numerical integration of the 
electric field, where the correct I fulfils the 
condition  
 .     (Eq. 3) ∫−=

rt

rw
EdrU



In combination with particle charging and 
deposition models, eqs. 1- 3 allow a stepwise 
calculation of the whole deposition process 
including the effect of particle space charge on 
ion and electric field distribution. Based on the 
assumption of fast lateral mixing and hence 
constant particle concentration and charge 
over the ESP’s cross-section, an average gain 
in particle charge can be calculated from local 
charging kinetics. In combination with the 
deposition loss of charged particles that can 
easily be calculated from known particle 
electrical mobility and field strength at the 
surface of the collecting electrode, the rate of 
change in average particle charge, particle 
concentration and particle attached space 
charge concentration can be calculated.  
The result of this calculation method is 
compared to other model predictions in Fig. 2-
5. However this calculation procedure is 
already quite complex.  

2.2 Particle deposition in the 
strongly quenched regime 

 
In case of very high particle concentration, the 
local current uptake level can be in the sub 
percent rage of the clean gas current. 
Therefore, in the case of strong quenching, it is 
justified to neglect the contribution of the ionic 
space charge to the electric field.    
In this case the drop of the electric potential 
over the particle attached space charge has to 
be equal to the difference between the applied 
voltage and the corona onset voltage. In this 
limiting case we find the electric field to be 
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(Eq. 4) 
The space charge density which causes the 
drop of the electric potential between the 
corona wire and the tube is then found to be [1, 
3]: 
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(Eq. 5) 
 
Hence the particle number concentration c can 
be expressed by the average particle charge in 
the quenched regime. 
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For a monodisperse aerosol one can derive a 
constant particle deposition rate based on the 
differential Deutsch-Anderson approach: 
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(Eq.7) 
 
Solving this equation for dc/dt, writing A/V=2/r 
for a tube, and substituting cne by eq. 5 and 
E(r) from eq. 4, one finds a constant particle 
deposition rate in the strongly quenched 
regime [1, 3]:  
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(Eq. 8) 
 
Departing from the deposition rate and the initi-
al aerosol concentration, we can derive a 
rough estimate of the residence time needed to 
overcome the quenched state (see Fig.2-5). 
If additionally the limitation of the electric field 
by an excessive sparking frequency is consi-
dered, one can use eq. 8 for maximizing the 
deposition rate.  
For example, a corona wire with 1mm dia-
meter is chosen. The corresponding onset 
electric field is calculated by the Peek [5] 
formula. With the maximum average field U/r 
assumed to be 600 kV/m (typical value for 
dense sulphuric acid mist as given by Parker 
[4]) and the maximum electric field at the 
collecting electrode limited to 800kV/m, one 
finds tube diameter dependent deposition rates 
as shown in Fig.2-1 .  
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Fig. 2-1: Particle deposition rate divided by the 
particle electrical mobility as a function of the 
tube radius. Wire diameter: 1mm. Sparking 
criteria as described in text.   

2.3  Particle concentrations which 
induce strong quenching 

 
The continuous deposition of charged particles 
(eq. 8) while the particle attached space 
charge is assumed to be constant (eq. 5), 
implies that the particle charge must increase 
with time. Therefore a certain ion concentration 
and hence an ionic current must be present 
even in the strongly quenched regime.  



For small currents, where the assumption of a 
negligible contribution of the ionic space 
charge is still justifiable, one can derive the 
time dependent current uptake from a balance 
of the particle attached space charge. 
As the particle space charge concentration is 
assumed to constant in the quenched regime 
(eq. 5) it follows that the losses of particle 
space charge have to be compensated by an 
increase of average particle charge 
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(Eq. 9) 
And hence  
 

dt
dcn

dt
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, 

(Eq. 10) 
whereby the particle deposition rate on the 
right hand side can be substituted by eq. 8.  
The gain of the average particle charge can 
calculated from an ion extinction function, if 
fast radial mixing and therefore constant 
particle concentration and average particle 
charge over the ESP’s cross-section is 
assumed.  
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(Eq. 11) 
 
whereby the ion-particle combination coef-
ficient Λ [m³/s] equals the particle charging rate 
in coulombs per second divided by the local 
ion space charge density. Λ /(ZiE) [m²] can be 
interpreted as the effective ion trapping cross 
section of a particle.  
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Fig. 2-2: Ion transmission through a 200nm 
aerosol (εr=2.1) in ESP. Tube diameter: 0.2m, 
corona wire diameter 0.2mm, applied voltage 
40kV. Λ according to Lawless [2] charging 
model. 

The difference between the ionic current at the 
wire and at the precipitation electrode is the 
current which is attached to the particles and 

leads to the increase of mean particle charge. 
So we find  
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(Eq. 12) 
 
Using eq. 12 for the left hand side of eq. 10 
and the particle deposition rate in the 
quenched regime multiplied by the average 
particle charge for the right hand side, the ionic 
current uptake per meter of corona wire is the 
only unknown parameter. Substituting the 
concentration c by eq. 6, the solution of the 
resulting equation yields the specific current 
uptake: 
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(Eq. 13) 
 
Eq. 13 also allows to calculate the trans-
mission of the ion current through the aerosol 
during the precipitation process. Fig. 2-2 
shows the ion transmission as a function of 
average particle charge.  
Of course, eq. 13 holds true only in the 
strongly quenched regime where ionic space 
charge is negligible. Therefore we define the 
strongly quenched regime to be restricted to 
current uptakes of less than five percent of the 
clean gas current. Fig. 2-3 shows the current 
uptake as a function of average particle charge 
as calculated by eq. 13 for Λ calculated by 
different charging theories.     
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Fig. 2-3: Average charge dependent current 
uptake according to eq. 14 for different 
charging models. Aerosol and ESP as 
described in Fig. 2-2. 

A correlation between average particle charge 
and residence time can be found from an 



integration of the deposition kinetics, whereby 
the concentration c(t) is s bstituted by eq. 6 u
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(Eq. 14) 
 
The combination of eq.13 and eq.14 allows the 
calculation of the residence time dependent 
specific current uptake as shown in Fig. 2-4. 
A comparison to other calculation methods is 
given in Fig. 2-5. 
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Fig. 2-4: Residence time dependent current 
uptake for data as used in Fig. 2-3 and an 
initial number concentration of . 
Clean gas current 1,1mA/m.  
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2.4 Simulations 
 

Compared to the more or less analytical 
models presented above, numerical calcula-
tions additionally allow for the consideration of 
particle size distribution and distribution of 
particle charge within each size fraction.  

Assuming negligible axial dispersion and radial 
symmetry of the system, the problem can be 
treated as 1-dimensional on the radius coor-
dinate, while parameters are changing with 
time. The basic equations to be solved in a 
simulation are: 

1) Equation of continuity for the ionic current, 
modified for ion losses due to particle charging. 
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Here PC is the number of particle size classes 
and CC is the number of charge classes. 

2) Poisson’s equation  
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3) Electric potential  

( )ϕgradE −=    (Eq. 18) 

4) Particle charging kinetics 
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    (Eq. 19) 

5) Particle motion/-deposition (class-wise) 

( )k,jdispk,jk,jk,j cgradDEZcj −=
rr  (Eq. 20) 

For comparison of experimental and theoretical 
time dependent current uptake, the particle 
size distribution was discretized logarithmically 
into eight size fractions, the particle charge 
distribution within each size fraction was 
resolved down to one elementary charge and 
the radius was discretized linearly into 50 
elements. A simulation for a monodisperse 
aerosol is show in Fig. 2-5 in comparison to the 
simpler models. 
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Fig. 2-5: Current uptake as a function of the 
residence time by a the assumption of a 
complete deposition under quenched 
conditions (fat solid line), by combination of 
eqs. 13 and 14 (short dashes), by the stepwise 
calculation using eqs. 1, 2 and 3  for 
calculation of ion and electric field distribution 
(long dashes), and by simulation (thin full line). 
Geometrical parameters of the ESP as in Fig. 
2-2, applied voltage 20kV, particle diameter 



200nm (εr=2.1), initial number concentration 
1014 m-3. 
Alltogether, these simulations are quite 
complex and probably, the analytical model 
prediction may be sufficient for design and 
trouble shooting in many cases. 

 

2.5 Experimental validation of the 
model 

 
A first series of experiments was carried out in 
an ESP that is operated in batch wise mode. 
This ESP consists of two tube wire type ESPs 
in parallel, which are connected on the top and 
bottom side. Each of these ESPs has a tube 
diameter of 0.2m and a wire diameter of 
0.2mm. The total length of each ESP is 1.6m. 
To ensure well mixed conditions, fans were in-
serted into the connecting pieces between the 
two ESPs, which provide a circulating gas flow 
velocity of approximately 5m/s and maintain 
well mixed conditions.  
 

 
 
Fig. 2-6: Experimental setup for measurement 
of the time dependent current uptake. 
 
The current uptake is measured from one of 
the two cylindrical sections by a digital 
recording oscilloscope via a 10 kΩ resistor. 
Sample points for the particle attached space 
charge density, measured by an FCE, and the 
particle size distribution and concentration by 
SMPS are located at the other tube. 
As aerosol, a condensation aerosol of liquid 
paraffin was used. 
 
For the positive corona the onset voltage was 
found to be 8.0 kV. The clean gas current 
voltage curve is in excellent agreement with 

theoretical predictions [6] when the ion mobility 
is set to 1.55cm²/Vs.  
The predicted space charge density in the 
quenched state (see eq. 2) is compared to 
measurement results in Fig. 2-7  
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Fig. 2-7: Comparison of measured and pre-
dicted space charge density in the quenched 
regime. 
 
For measurement of time dependent current 
uptake, the ESP was flushed with aerosol. 
Particle size distribution and concentration is 
measured by SMPS while flushing. When sam-
pling was finished, the ESP was switched to 
the batch mode by closing the aerosol in and 
outlet. The voltage was switched on and the 
current was sampled as function of residence 
time. The current uptake characteristics for 
different applied voltages are compared to 
simulation predictions in Fig. 2-8.   
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Fig. 2-8: Time dependent current uptake per 
length of corona wire for different applied vol-
tages in comparison to simulations. Aerosol: 
liquid paraffin, εr=2.1, , 
CMD: 210nm, GSD: 1.4. 
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The residence times when the current approa-
ches five percent of the clean gas current are 



compared to the prediction of the analytical 
model in Fig. 2-9  
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Fig. 2-9: Quenched residence time according 
to the current uptake measurements in Fig. 2-8 
and prediction of the quench time by the 
analytical model with and without consideration 
of thermal coagulation. The CMD was used as 
particle size in the analytical model.     
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Fig. 2-10: Clean gas current voltage curve and 
current voltage curve under the influence of 
particle space charge for a continuously opera-
ted ESP.  
 
To show the transferability of the findings to 
common continuously operated ESPs, the 
current voltage curve of a continuously 
operated ESP was measured under the 
influence of high particle concentration. The 
results are shown in Fig. 2-10 in comparison to 
the residence time averaged currents accor-
ding to the analytical model and simulations.  
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Symbols  
A [m²]:           collecting electrode area 
Aext [m²]:        ion  trapping cross section of a particle  
B [m/(Ns)]:     mechanical particle mobility 
Cu [-]:            Cunningham slip correction 
c [1/m³]:         number concentration 
c0 [1/m³]:        initial number concentration 
E [V/m]:          electric field strength 
e [As]:            elementary charge 
I [A]:               current 
L [m]:             corona wire length 
n [-]:               number of el. charges per particle 
r [m]:              radius coordinate 
rt [m]:              tube radius 
rw [m]:            wire radius 
t [s]:               residence time 
U [V]:             voltage 
∆U:                difference betw. applied and onset voltage  
V [m³]:            precipitator volume 
Wsed [m/s]:      particle drift velocity 
x [m]:              particle diameter 
Zi [m²/(Vs)]:    electrical mobility of the ions 
ε0 [As/(Vm)]:   electrical permittivity of vacuum 
ρi [As/m³]:       ion space charge density 
ρi,p [As/m³]:     particle carried space charge density 
Λ [m³/s]:          ion-particle combination coefficient 
η [Pas]:           gas viscosity 
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